- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources1
- Resource Type
-
0000000001000000
- More
- Availability
-
10
- Author / Contributor
- Filter by Author / Creator
-
-
Moyal, Pascal (1)
-
Perry, Ohad (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
& Arnett, N. (0)
-
& Arya, G. (0)
-
& Attari, S. Z. (0)
-
& Ayala, O. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
The fundamental problem in the study of parallel-server systems is that of finding and analyzing routing policies of arriving jobs to the servers that efficiently balance the load on the servers. The most well-studied policies are (in decreasing order of efficiency) join the shortest workload (JSW), which assigns arrivals to the server with the least workload; join the shortest queue (JSQ), which assigns arrivals to the smallest queue; the power-of-[Formula: see text] (PW([Formula: see text])), which assigns arrivals to the shortest among [Formula: see text] queues that are sampled from the total of [Formula: see text] queues uniformly at random; and uniform routing, under which arrivals are routed to one of the [Formula: see text] queues uniformly at random. In this paper we study the stability problem of parallel-server systems, assuming that routing errors may occur, so that arrivals may be routed to the wrong queue (not the smallest among the relevant queues) with a positive probability. We treat this routing mechanism as a probabilistic routing policy, named a [Formula: see text]-allocation policy, that generalizes the PW([Formula: see text]) policy, and thus also the JSQ and uniform routing, where [Formula: see text] is an [Formula: see text]-dimensional vector whose components are the routing probabilities. Our goal is to study the (in)stability problem of the system under this routing mechanism, and under its “nonidling” version, which assigns new arrivals to an idle server, if such a server is available, and otherwise routes according to the [Formula: see text]-allocation rule. We characterize a sufficient condition for stability, and prove that the stability region, as a function of the system’s primitives and [Formula: see text], is in general smaller than the set [Formula: see text]. Our analyses build on representing the queue process as a continuous-time Markov chain in an ordered space of [Formula: see text]-dimensional real-valued vectors, and using a generalized form of the Schur-convex order.more » « less
An official website of the United States government
